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ABSTRACT

Suppose {Xn} is a sequence of random variables (r.v. s) with means

.n and variances f (n. ) . Attempts to find r. v. s Tn = T n(X n) with

approximately constant variance have focussed on r.v. s of the form
X

(1) Tn(Xn) f f 1

•n

Curtiss (Annals of Math. Stat., vol. 14, 107-122) proved a fundamental theorem

which gave a sound theoretical basis for transformations of the form (1). This

note gives several generalizations and applications of Curtiss's theorem.

Typical is the following:

Suppose the sequence of r.v. s {X -n n} converge in probability to 0

the sequence of real numbers {.n} converges to a finite limit ý± and the

distribution functions of {(Xn - .n)an} (an a positive constant) converges to a

d.f. F(w) . If the real-valued function of a real variable g(x) has a continuous

derivative C'(x) which does not vanish at x = p. , then the d.f's of the

sequence

t (Xn) - 9(p.

converge to F(w) .

Standard theorems of real function theory and standard techniques of

probability theory are employed.
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1. Introduction: Suppose (X n} is a sequence of random variables (r. v. s)

with means Rn and variances f n(ýn) . Attempts to find r.v.s Tn = T n(Xn )

with approximately constant variance have focussed on r. v. s of the form

X

fn 
1

(I) TnXn} = t)n dt.

The heuristic argument usually advanced for such a transformation involves

approximating Tn(x) by the linear term of its Taylor series expansion in a

neighborhood of Rn " Of course, heuristic arguments are a matter of taste,

but many people have pointed out difficulties connected with this one. An

early reference is [3], a recent one is (5], p. 72.

In 1943, Curtiss [3] proved a fundamental theorem which gave a sound

theoretical basis to transformations of the form (I).

This note gives an alternate heuristic argument which can be made rigorous.

In its rigorous form it is a generalization of Curtiss's theorem and implies many

of the standard asymptotic theorems. Standard techniques of real function

theory and probability theory are used.
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2. An Heuristic Argument. We follow Curtiss in his formulation. We

consider a sequence of r.v. s {Xn), a sequence of real numbers {•n), and

a sequence of real-valued integrable functions pn(X4 defined on the real

numbers, such that the sequence of r.v. s Yn = (X n- d ) have

distribution functions (d. f. s ) which converge to a d. f. F(w) at continuity

points of F . (Let Y be a r.v. with d.f.F. We shall follow Parzen [7],

p. 424, saying that the law of Yn converges to the law of Y and writing

We consider the sequence of r.v. s Tn(Xn) . If gn is continuous, then,

according to the mean value theorem for integrals, Tn = (Xn - In) fn(•) for

suitable ý . Now if 9n is a "slowly-changing" function Tn will be

approximately (X n - 'n) Vn(dn so that we should have /(Tn) - AY)

(Arley and Buch [I], p. 79], in considering the problem of data transformation

have applied the adjective "slowly-varying" to the function Tn (x), interpreting

this as a condition relating the first two derivatives of T which they assume

exist. In making the above argument rigorous, we shall use "slowly-varying"

in the precise sense of Curtiss as stated in Theorem 1, below.)
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3. The Heuristic Argument Made Rigorous. We use this line of argument

to prove Theorem 1. We consider throughout this paper a sequence of random

variables {Xn), a sequence of real numbers {Rn ), and a sequence of real-

valued functions of a real variable {Vn(x)}, Lebesque integrable with respect

to x for each finite interval and each n . We shall be concerned with the

following conditions.

Condition A: The Laws of the r.v. s. Yn= (Xn - I•n qn (I&n) converge to

the Law ofa r.v. Y .

Condition B: 9 nILn) > 0

Condition C: For an arbitrary closed, bounded interval [a,b]

n n
lim 

=P d

uniformly for xe [a,b]

Theorem 1. (Curtiss) Consider the r.v.

x
(2) Tn = f n n(X) dx

If conditions A, B, and C hold, the Laws of Tn converge to the Law of Y

In the argument below, we only need condition C holding for almost all x

One merely replaces "infimum" and "supremum" by "essential infimum" and

"essential supremum".)
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(In [3], Curtiss hypothesized and used the continuity of the d. f. F(w) of

Y.)

Proof of Theorem 1: That Tn is a r.v. is assured by the measurability of

a continuous function of a measurable function.

Since 40(Yn) ý(Y), there exist continuity points a and b of F and

nI such that

(3) P(a <_Yn <-b) >1-,

For all n > n1 . Consider n > n1 . From elementary properties of conditional

probability

(4) P(Tn< wa< Yn a <b)(l-E)< P(Tn< w)<_ P(T <wla< Y <-b)+E

(Here P(# I *) is the conditional probability of the event # given that the event

* holds.)

Now the condition a < Y< b is the same as the condition

(5) + n X < b- n --) n( nn) n ( n n

Also

d
(6) n(d- c)< f f(x) dx <M(d- c)

c

if f(x) satisfies m <f(x) -M on the interval [c,d] . Thus, for Yn [a,b],

so long as Xn >In we maywrite

(7) (Xn mn <Tn< -Tn- < (Xn - Rn) M
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where

(8) Inm =inf 9 n(-x + L)

and

M= sup 'n( + n
(9) nxE[a, b] 4n Ln )

If X < W, Mn and m are interchanged in equation 7. Consequently, for

w f [a,b] ,

(10) P(X - 1 L)M <wand X -pn_>Ola<Y <b)+P((Xn -Ln)m <w andnI0 Pntn Mn- Xntn n- n--n n--

Xn- n.<O a<Yn<b) <_P(Tn<wla<Yn <_b) <

P((X - pn} mn <_w and X n-n < 0 1 a < Yn <-b) + P((Xn n n- M and

XnIn.01a< Y_<b)

But (assuming a < 0 < b) this reduces to"4n(Rn)pnI)

F (W ) - nF(a) Fn(w )-Fn(a)
n Mn mn

(na) <P(Tn< wia<Y <b)<
Fn(bF(a) .n-. . Fn(b) - Fn(a)

when w is positive and to

9 n(•n} n(n

Fn(w- )- Fn(a) Fn(w M )- Fn(a)
n n m n n( M

n < P(T < i< bS n
Fn(b) - Fn(a) <n F-(b) -F n(a)

when w is non-positive.

But as an immediate consequence of Condition C we have
m

(12) nlm n 1

and M

(13) lrm n -I
n- oo Vn( n

Thus if w is a continuity point of F, the first and last terms in (11) can be

made arbitrarily close to F(w) and the middle term can be made (according to
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(4)) arbitrarily close to P(Tn .) n Thus if(Tn) - 4(fY) as asserted.

Actually we can do better. The heuristic argument suggests that the

difference Tn - Yn should be small in some sense. In fact, we can prove

Theorem 2. Under the hypotheses of Theorem 1, the sequence {Tn - Yn}

converges to 0 with probability 1 .

Proof: We let o represent a sample point so that Z(w) represents the

value of the r.v. Z at the point w . With the restrictions preceding (7) we

have, as a consequence of (7) ,

(14) (X n(w) RnXmn - rn{R)) -- T(w) -Yn w)c(X n(w)-RnXM n-- Vn()).

(If Xn(w) < R n' the inequalities are reversed.) In (3) we can always choose

a negative and b positive, and we note from (5) that, under the conditions

assumed,

a b(15) •n(in) <Xn(c4-In<_ L(n).

nnId n n(Rn

From (14) and (15) we find that ITn(w) -Yn(w) J is no larger than the largest

of the four numbers

a('n(Rn) -Mn) (m-qf(N)) (M-qf(R)b (V(l-mn"a ,a b ,b
n, n n~ qn( vn( n n'n)

But each of these can be made arbitrarily close to 0 by choosing n sufficiently

large. Thus for Yn(w) c (a,b], lim (Y n(w) - Tn ()) = 0 . Thus

P((Yn - T )n- 0) > 1 - e for each positive E and the theorem is proved.
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4. Large Neighborhoods and Small. Theorems I and 2 require that the

functions (pn(x) be nearly constant over arbitrary closed, bounded intervals.

They have as corollaries many of the theorems requiring approximate linearity

of a related function in a small neighborhood. We prove several such theorems.

Theorem 3. Suppose the sequence of r.v. s {Xn- ý} converges in

probability to 0 and {(Xn %)a n} with a n > 0 for each n converges in

law to a r.v. Y . Suppose g(x), a real-valued function defined on the reals,

has a continuous first derivative which does not vanish at x = . Then the

sequence

9(Xn) - 46 }

converges in law to Y . (Here and subsequently g'(x) is the derivative of

9(x)

Proof: We suppose the law of Y does not assign measure I to a single

point for otherwise the theorem is trivial. Since

(16) a n((Xn) - g(I)) X an 'x)

n n _ n x

we need only check that conditions A, B and C are satisfied for the function

qn(x) a 'n n •
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Since (pn(ýL) = an' conditions A and B are satisfied by hypothesis. To

check condition C we observe that the sequence a diverges to infinity

since {X -n } converges in probability to 0 and (Xn - i}an converges in

law to a non-degenerate law. Condition C reduces to
,X

6(, + R)

(17) lim ,(n I

uniformly for x in [a,b] . But since a diverges to infinity, this is merely
n

the statement that '(x) is continuous at x = R, since for n sufficiently

large and all x e [a,b], -x + R is in an arbitrary neighborhood of ý
n

We only need the continuity of V'(x) at I.

Theorem 3 has as a special case the one-dimensional case of 5e. I of Rao [8]

The p. of Theorem 3 can be replaced by a sequence of 1n which converges

to a finite limit p. . For we need only to verify that

(18) lira n = 1
n-0oo VG(n)

uniformly for x c [a,b] . Again this is just the continuity of V(x) at p.

Hence we have

Theorem 4. Suppose the sequence of r.v. s {X - .n} converges in

probability to 0, the sequence of real numbers {Rn} converges to a finite

limit p. and {(Xn - pn )an with a positive converges in law to a r.v. Yn n nn
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If 4(x) has a continuous first derivative which does not vanish at x = •, than

the sequence

!g(Xn) - 9(11)}

converges in law to Y

Theorem 4 has as a special case the asymptotic normality of "smooth"

functions of maximum likelihood estimates when those estimates satisfy the usual

regularity conditions guaranteeing asymptotic unbiasedness, consistency and

normality. Such a theorem is I. 3.7 of Wilks's book [9].

The question arises as to whether one can use a sequence of functions

F n(x) in Theorem 3. Additional assumptions are necessary.

Theorem 5. Suppose the sequence of r.v. s {X n- R} converges in probability

to 0 and {(X n- 11)n} converges in law to Y . Suppose n (x) is a

sequence of differentiable functions such that

(19) lim 9' n(x) = •x)

for each x, with rk(L) i 0 and such that the functions 'n (X) are equicontinuous,

then the sequence

gn(Xn) - nfl)

an)

converges in law to Y
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Proof: We consider q (X) n-a--- a
n~x YJ L) n.

Now • (•) = , so that Condition A is satisfied since

9' GjL)
lira-

and Condition B is satisfied by restricting attention to n large enough that

n~g•>0.

To check Condition C, we need to show that

n~a n V)n fL)

(20) urn n =
n , 00 X "

cloe t th no-zro onsanti~() ndtawilsfce Wehv

uniformly for x E [a,b] . We show that the numerator can be made arbitrarily

close to the non-zero constant (TKR) and that will suffice. We have

na n 3 + R) - V _•R,
n n -R n ',n(")

+ Ig'n(I*) -'I(R)I

The first term on the right can be made small by the equicontinuity of C n(x) at

x = R and the second can be made small by the convergence of V'n(ýL) to t ('L)

Since we have proved conditions A, B and C we could invoke Theorem 2

rather than Theorem I, thus showing convergence with probability 1 of the

differences.
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5. Applications to Poisson Distributions. In this section we consider

the problem of normalizing the Poisson distribution -- a problem in which there

has been some recent interest [6]. Let X have a Poisson distribution withn
x -n

mean n . Then, of course, -o o(Y) where Y has the standard
Xnnormal distribution. Further - converges in probability to the constant I

A standard theorem [Z, §20.6] states that if 40(Y -n• (Y) and Zn converges

in probability to the non-zero constant c, then f(Yn/Zn) -. 4(Y/c) . These

three facts can be combined to give the asymptotic normality of a great many

r.v.s, e.g.,

n nn nn R(l nx) NXn

where R(x) is any rational function. The first three are also immediate

consequences of Theorem 1. Theorem I gives other examples. We give an

intuitively appealing form of Curtiss's theorem for r.v. s with Poisson distributions.

Theorem 6. If Xn has a Poisson distribution with mean n and if V n(x)

is a sequence of continuous real-valued functions defined for real x, such

that

(22) lim (n(x %n + n) Nn
n-- 0

uniformly on an arbitrary closed and bounded interval [a, b], then the sequence

of laws of
X

f n pn(x)dx
n
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converges to that of a standard normal r.v. Y

(Roughly this theorem says that a function which is nearly constant within

many standard deviations of the mean will serve as integrand for a normalizing

transformation.)

To prove the theorem, we show that (22) implies conditions A, B, and C

Taking x = 0 in (22) we have

(23) lim 9Pn(n) AJ n = I

so that conditions A and B are satisfied. Thus we need only show that (22)

implies condition C . But, in virtue of (23), this reduces to showirn2 that

(24) lim (Pn( x + n)

n.On (p ( n)

uniformly for x e [a,b]

Establishing (24) is an easy application of the "Moore-Osgood" iterated

limits theorem with a parameter [4, Theorem VII. 4, p. 102]. We consider an

arbitrary finite closed interval [a, b] and the double sequence of functions

(25) X4 n(X + ( q47 r

Since (23) holds, we have, for arbitrary positive c

---M( x [a - b ]
m q
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for m sufficiently large, say,m>_m . Consequently, by hypothesis,

(26) lim ý m, n (X)I
n- o0

uniformly for x f [a,b] and m _> m0 . Since Pn(x) is continuous and hence

uniformly continuous on finite closed intervals

(27) lrm n MP n(X) = (q(x n + n) 'Jn
m-'0o mn

uniformly for x e [a,b] for each n . But then by the Moore-Osgood theorem

the double limit

lir m, n(X)

n-•00

exists uniformly for x f [a, b] and is equal to the iterated limit

lim lim 4 n(x)
m-ao n--0oo n

But this iterated limit is I, according to (26) . In particular, then, we can

assert that the limit of the "diagonal" terms,

(28) lira (x) = 1

n--. cn,n

uniformly for x . [a,b] . Now (Z8) is the same as (24), so the proof is

complete.

(If R(x) is any rational function, not vanishing at x = n then R(x)/(R(n) 4n)

satisfies (22) . In particular if R(x) = 1/(x+ c) one has that



-14- #355

(N/n log(Xn + c) - "In log(n + c)) is asymptotically normal. Thus a germ of

the reason that log X is normalizing for Poisson r.v. s is the statement

"Out near n,x/n is about 1.")

(There is nothing special about the role of 'In or of the Poisson

distribution in the above proof. One can prove a general theorem by exactly the

same methods.)

6. Final Remarks. The theorems here do not really answer the important

questions of data transformation. In fact, they seem to raise more then they

solve, for they indicate a tremendous latitude in the choice of the function

n (x) . Thus, if 0n (x) is any function satisfying conditions A, B and C

then so does, for instance, q0n(x) R(x)/R(Ln) where R(x) is any rational

function which does not vanish at x = pn But P (X)-•On(pn) being constant
n ~n~ ý'n n

satisfies C, so that many transformations will work.

This latitude in the choice of (0n(x), the fact that Theorem 2 says that,

asymptotically, one is not changing Y and general remarks about applying

asymptotic theorems show that any such transformation should carry with it

analysis of the closeness of approximation. The large body of work done on this

subject is particularly reassuring.
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